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The Crystal Structure of Dickite*

By R. E. NewnHAMT AND G. W. BRINDLEY ]
The Pennsylvania State University, University Park, Pa., U.S.A.

(Received 18 February 1956)

The structure of dickite has been evaluated from rotation and Weissenberg data. The unit cell is
monoclinie, C¢, @ = 5-15, b = 895, ¢ = 14-42 A, § = 96° 48, and Z = 4. One-dimensional Fourier
synthesis confirms the polar arrangement of the two kaolin layers in the unit cell. Their disposition
within the cell has been established by systematic consideration of possible stacking sequences. The
refined structure, obtained by two-dimensional Fourier syntheses, shows considerable distortion
within the silica and alumina sheets of the structure.

1. Introduction

The determination of the structure of dickite,
ALSi,0,(0H),, was undertaken as part of a program
to determine the detailed crystal chemistry of the
kaolin-type clay minerals. These include kaolinite,
dickite, nacrite and halloysite. The basic structural
scheme for these and other layer-type silicates was
laid down by Pauling (1930) from ecrystallochemical
considerations. The structures are composed of a basic
unit layer, known as the kaolin layer, consisting of a
hexagonal network of Si—O tetrahedra with a super-
posed layer of Al-O,0H octahedra. Regular sequences
of one, two and six kaolin layers are found respectively
in kaolinite, dickite and nacrite. Halloysite is made up
of an irregular sequence of kaolin layers. From amongst
these minerals, dickite alone appears to be suited to
single-crystal analysis. Kaolinite and halloysite, by far
the most common of the kaolin minerals, never form
large crystals; at the best, kaolinite gives rise only to
vermicular forms. The extremely rare nacrite, on the
other hand, forms large but imperfect crystals yielding
poor diffraction patterns. Dickite, however, gives
sufficiently large crystals of a high degree of perfection.

An analysis of the monoclinic dickite structure was
first undertaken by Gruner (1932). After obtaining
the unit-cell parameters from optical data and X-ray
powder photographs, he indexed the powder line dia-
gram and noted the systematically absent reflections
as hkl when h+k is odd, 20l when A or [ is odd and
0k0 when k is odd. The space group most compatible
with the observed results and the nature of the kaolin
layer was C5-Ce¢, with the a and c¢ axes lying in the
glide plane of symmetry. The unit cell contains two
kaolin layers. Gruner found two arrangements of the
layers which gave identical calculated intensities for
the 20l and A3l reflections, but different values for the
generally weaker k1l and k2! peaks. On the basis of
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powder line data, however, neither structure seemed
to be entirely correct.

Subsequent investigations of the structure were
carried out by Ksanda & Barth (1935) and by
Hendricks (1938). The former assigned dickite to the
centrosymmetric space group C$,, since the crystals
appeared to be non-piezoelectric, and they also ob-
tained single-crystal data which were compared with
the theoretical values calculated from Gruner’s struc-
tures, but no attempt was made to adjust the atomic
coordinates to obtain better agreement. Hendricks
found dickite to be pyroelectric, favoring the polar
space group Cj. Using Ksanda & Barth’s data, he
refined the z parameters and considered various ar-
rangements of the kaolin layers within the unit cell.
He concluded that one of Gruner’s original structures
was most nearly correct, but many discrepancies
between observed and calculated intensities still re-
mained.

2. Experimental

Small, pseudo-hexagonal, flake-like crystals of dickite
from Schuylkill, Pa., U.S.A., were used in the in-
vestigation. Rotation and Weissenberg photographs
were taken about the a and b axes both of which lie
in the plane of the flakes. The dimensions of the unit
cell were determined from twenty reflections of the
powder line diagram, using Cu K« radiation, 4 =
1-5418 A. A least-squares adjustment of the unit-cell
parameters yielded the following values:

a = 515+£001, b= 895+001, ¢ = 14-4240-02 A,
B = 96°48'+02" .

The space group is Ci-Cc with 4[ALSi,0,(0OH),] per
unit cell. Intensities of the A0l and 0! reflections were
estimated visually by comparison with a calibrated
scale from Weissenberg photographs, and were cor-
rected for Lorentz and polarization factors in the
usual manner. No allowance was made for absorption
because of the small size of the crystals, about
0-1x0-1x0-02 mm.3,
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3. Analysis of the structure

A preliminary one-dimensional Fourier synthesis was
carried out, using nine 00! reflections and the z co-
ordinates listed in Table 1. Fig. 1 compares the elec-
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Fig. 1. One-dimensional Fourier synthesis of dickite in the
¢ direction.

tron-density distribution derived from the observed
intensities and calculated phase factors with the
distribution obtained from the same number of cal-
culated intensities. The close agreement between these
curves confirms the mean z coordinates given in
Table 1 and the polar arrangement of the two layers

Table 1. Mean z coordinates

Layer zfe
60 0-000
4 8i 0-042
40, 2 (0OBH) 0-153
4 Al 0-229
6 OH 0-306

in the unit cell. The calculations were made using
Beevers-Lipson strips and the Bragg-West (1928)
atomic scattering factors, without further allowance
for thermal motion.

The analysis of the structure proceeds in two stages:
(i) the determination of the stacking of the layers
within the cell, and (ii) the refinement of the atomic
coordinates within a layer. The first stage has been
carried through using the idealized layer structure
which has been amply confirmed by the earlier work.
An arbitrary origin for the cell was chosen at one of
the oxygen atom sites in the all-oxygen layer, at
z = 0, There are then six possible ways of building
up a single kaolin layer plus an undetermined number
of additional possibilities which arise by shifting the
origin in the a-b plane. The symmetry operations im-
posed by the space group, however, considerably
reduce the number of independent structures. Sup-
pose, for example, the origin is shifted by an amount
—X in the a direction and —Y in the & direction.
The coordinates of the i¢th atom in the asymmetric
unit are then changed from z;, ;2 to (7;+X),
(y;+Y), 2. Using these new coordinates involving the
arbitrary shift of origin, we proceed to investigate the
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form of the structure factor F, which, for a non-
centrosymmetric crystal, is of the form A+¢B. For
a general hkl reflection 4 and B take the form

A(hkl) = 3 4f; cos? 2r{}(h+k)}
i

% cos 27t (ha;+hX +1z;+ 3) cos 2n(ky;+ kY —}) ,
B(hkl) = X 4f; cos® 2r{i(h+k)}

x sin 27z (ha;+hX +lz;+3) cos 2m(ky;+ kY —}) .
The contributions to 4 and B of the original coor-
dinates (x;, ¥;, 2;) can now be separated from those
due to the superimposed movement of the origin

(=X, —Y,0). For the calculated intensity, |F,(hkl)[?,
we arrive at the expression

|F,(hkl)|2 = 16 cos® 27 {} (h+k)}
x{[cos (2zkY) X f;P;R;—sin @2nkY) X fiPS:]
+ [cos (2kY) 3 fiQ:Ri—sin (2nkY) 3 fiQiS.1%}
where (1)
P, = cos 2m(hx;+1z;+ ),
Q, = sin 2n(hx; +1z;+3) ,
R; = cos 2n(ky,—}!),
S; = sin 2x(ky;— 1) .

This expression for F? is independent of X, the
arbitrary shift of the origin in the a direction. More-
over, a simple calculation shows that F(¥Y+3}) =
F2(Y), so that only arbitrary shifts in the range
0 < Y < b/2 need be considered. This limitation fol-
lows directly from the symmetry operations of the
unit cell. The determination of the crystal structure is
now reduced to a straightforward evaluation of (1).
One need calculate only the values of P;, @;, B;, and
S; and perform the indicated summations for the six
possible structures of a single kaolin layer which,
when combined with the quantities sin 2zkY and
cos 27k Y, give the calculated intensities F?2, The cal-
culated intensities can then be compared directly with
the corrected observed intensities. .

The six different arrangements within the kaolin
layer are obtained as follows: With an oxygen atom
of the all-oxygen layer at the origin, the atoms of the
O layer, the Si layer and the O,(OH) layer are auto-
matically fixed for the idealized kaolin layer. There
are two ways in which the OH layer can be fitted on
to the O—OH layer, which we label M and N, and three
ways, a, b, and ¢, in which the Al atoms can be ac-
commodated within the structure. The coordinates of
the atoms making up the asymmetric unit of each of
these six possibilities are listed in Table 2. The values
of P, @Q; R; and S; were tabulated for a group of
low-order reflections for each structure type.

Structures Na, Nb and Nc of Table 2 may be
eliminated from further consideration by examining
the k0! reflections. Since the %0l intensities are in-
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Table 2. Atomic coordinates of the six possible configurations of a single kaolin layer
Ma Mb Mec Na Nb Ne
zla ylb z[c zla ylb  zfc zla ylb z]c zla ylb z/c zla ylb  z/c zla ylb  zlc
0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0, + 1 0 ¥ ¢ 0 + 0 3 + 0 ¥ ¢+ o0 % t 0
0, 3 + 0 ¥ ¢+ 0 F: + 0 3 t 0 Ed ¥ 0 ¥ t o0
0, 0-050 % 0-153 0-050 % 0-153 0050 % 0-153 0:050 % 0-153 0-050 % 0153 0-050 3 0-153
O 0-550 4 0-153 0550 % 0-153 0550 % 0-153 0-550 % 0-153 0550 + 0153 0550 % 0153
(OH), 0550 0 0-153 0-550 0 0-153 0-550 0 0-153 0-550 0 0-153 0-550 0 0-153 0550 0 0-153
(OH), 0265 0 0-306 0-265 0 0-306 0265 0 0306 0932 0 0-306 0932 0 0-306 0932 0 0-306
(OH), 0-765 } 0-306 0-765 % 0-306 0-765 } 0-306 0432 } 0-306 0-432 ¥ 0306 0432 } 0-306
(OH), 0265 % 0306 0-265 % 0-306 0265 % 0-306 0-932 i 0:306 0-932 3 0306 0932 % 0-306
Si, 0014 % 0042 0014 % 0042 0014 } 0042 0-014 } 0042 0014 } 0042 0-014 3 0042
Si, 0-514 } 0042 0-514 % 0-042 0514 3} 0-042 0-514 3 0-042 0-514 3 0042 0-514 } 0-042
Al 0907 0 0-229 0907 0 0-229 0407 } 0-229 0241 0 0229 0241 0 0-229 0-741 3 0-229
Al, 0407 % 0-229 0-907 % 0229 0907 3 0229 0741 3 0229 0-241 3 0229 0241 3 0-229
Table 3(a). Comparison of Okl structure amplitudes
Structure Scaled JF2 values for Okl reflections
R
Layer Y (b/12) 020 021 022 040 060 080 0,10,0 (%)
Ma 0 31-4 20-6 52-7 24-7 104-0 6-9 9-2 23-2
Ma 1 404 44-0 155 3-0 124-6 72 14-7 41-8
Ma 2 2-8 40-2 46-4 29-9 113-0 14-1 3-3 37-1
Mec 0 70-3 0-0 27-0 55 108-4 12.8 25-5 535
Mc 1 39-3 48-7 15-1 30 121-0 70 14-3 42-3
F, 21-6 353 59-3 9-6 100-0 74 16-3 —
Table 3(b). Comparison of 111 structure amplitudes
Structure Scaled |/F? values for 117 reflections
R
Layer Y (b/12) 110 11T 111 112 112 113 113 (%)
Ma 0 =
Mb 0 } 8:6 4-8 47 35 9-4 4-5 44 43-6
Ma 3 . . . .
Mb 3} 4-6 44 10-5 4-5 44 5-3 6-2 23-0
F, 6-1 6-8 8-8 4-8 39 57 3-8 —

dependent of Y, their values for the six structure types
fall into two groups corresponding to the M and N
structures. Calculations were carried out for 39 A0l
reflections. The M-type structures gave an agreement
factor (R = |F,~F,|/|F,]) of 24-5% while the N-type
structures gave R = 45-4%, indicating considerably
less agreement with experiment and thus eliminating
them from further consideration.

We consider next the various values of ¥ between
0 and b/2. Although in theory Y can take any value
within this range, it is possible to limit the number of
trial values through consideration of the strong 060
reflection. With an arbitrary division of the cell into
increments of 4/24, it is obvious that the calculated
intensity of 060 is zero whenever Y is an odd multiple
of b/24; thus, to a first approximation, it may be
assumed that Y is an even multiple of 5/24. The
values of F? for the three M-type structures were
computed for certain low-order Okl reflections using
the following values for Y: 0, b/12, b/6, b/4, /3, and
5b/12. These eighteen possible structures yield only
five different sets of Okl intensities. The results of
calculation are given in Table 3(a), where the cal-

ACo

culated intensities are scaled to the corresponding
observed quantities. The structure type Ma, ¥ = 0,
gives an R-factor appreciably lower than any of the
other four possibilities, thus eliminating them. There
are, however, three other structures (Ma—3, Mb—0
and Mb—3) giving the same set of Okl intensities as
Ma—0. These were differentiated on the basis of a
group of 11/ intensities (see Table 3(5)). Finally, then,
two structures remain, Ma—3 and Mb-3, giving
identical calculated intensities for all reflections.
These structures can be superposed by a shift of
z =af2 and z = ¢/2, which in no way affects the
calculated intensities. Hence the two structures may
be considered identical. The refinement of the Ma—3
structure is discussed in the following section.

4. Refinement of the atomic parameters

The refinement of the Ma—3 structure was carried
out on X-RAC using two-dimensional projections of
the a—c and b-¢ planes. The Fourier summation of the
electron-density projection along [100] was taken over
86 non-zero Okl reflections. Eleven of the thirteen

51
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Table 4. Atomic coordinates for the preliminary and refined structures
A. Preliminary coordinates B. Refined coordinates
Atom z/a y/b zfc zla y/b zfc
0, 0-000 0-250 0-000 —0-039 0-242 —0-009
0, 0-250 0-500 0-000 0-263 0-459 0-001
O, 0:750 0-500 0-000 0-773 0-509 0-001
O, 0-050 0-417 0-153 0-088 0-383 0-152
Oy 0-550 0-583 0-153 0-528 0-582 0-157
(OH), 0-550 0-250 0-153 0-588 0-276 0-157
(OH), 0-265 0-250 0-306 0-270 0-264 0-302
(OH), 0-765 0-417 0-306 0-770 0-407 0-299
(OH), 0-265 0-583 0-306 0-305 0-584 0-300
Si,; 0-014 0-417 0-042 0-005 0-402 0-041
Si, 0-514 0-583 0-042 0-505 0-580 0-040
Al 0-907 0-250 0-229 0-918 0-250 0-233
Al, 0-407 0-417 0-229 0-418 0-419 0-232
Table 5. Observed and calculated structure factors
Okl Fo F 0kl Fo F. 0kl F, F, 0kl F, F,
002 20-7 26-6 044 17-0 15-5 081 12:4 72 2,0,16 15-7 21-1
004 375 43-6 045 13-3 11-1 082 1-4 2-4 202 30-7 24-8
006 24-1 24-1 046 3-6 6-5 083 3-1 4-2 204 18-3 18-3
008 23-6 21-3 047 14-5 12-0 084 4-4 4-1 206 20-6 19-4
0,0,10 20-3 18-7 048 21-2 19-4 085 4-4 3-0 295 23-9 23-0
0,0,12 22-6 21-4 049 11-8 111 086 3-1 3-2 2,0,10 38-0 43-1
0,0,14 144 14-5 04,10 11-4 11-5 087 2-2 2-7 2,012 8-2 5-5
0,0,16 22-0 21-7 0,4,11 1-4 1-1 088 4-1 6-7 2,0,14 16-5 19-2
0,0,18 4-9 3-8 04,12 13-2 12-8 089 2-8 1-7 2,0,16 4-6 7-3
0,4,13 2.2 4-3 0,8,10 1.7 1-7 2,0,18 10-4 83
020 9-2 80 04,14 39 7-9 0,8,11 86 56
021 14-9 14-7 04,15 0-0 0-0 0,8,12 5-4 4-6 400 25-5 17-6
022 25-0 20-8 0,4,16 3-0 6-1 0,8,13 0-0 2:4 402 25-3 19-5
023 8-6 6-9 04,17 2:2 44 404 6-0 7-3
024 13-0 13-8 0,10,0 6-9 4-8 406 24-0 26-1
025 6-0 65 060 42-3 42-6 0,10,1 7-4 4-7 408 19-2 21-3
026 10-2 10-4 061 6-6 4-1 0,10,2 2-6 6-6 4,0,10 51 79
027 2-2 3:3 062 18-0 14-5 0,10,3 57 6-6 4,0,12 11-3 13-4
028 9-8 9-7 063 7-9 4-5 0,104 6-0 6-7 402 29-0 21-5
029 4.6 6-2 064 17-4 19-4 0,10,5 2:5 3-6 404 39-2 32-1
0,2,10 1-9 2-4 065 5-0 31 0,10,6 2-2 4-2 406 8-4 6-1
0,2,11 6-7 6-2 066 14-6 11-5 0,10,7 10-1 9-8 408 28-2 26-7
0,2,12 6-2 7-3 067 6-1 39 0,10,8 9-2 9-8 4,0,10 8-4 81
0,2,13 6-3 5-8 068 8-8 9-1 0,10,9 6-9 7-0 4,012 52 8-6
0,2,14 6-1 4-0 069 4-4 51 4,014 7-8 10-8
0,2,15 40 37 0,6,10 180 17-6 200 27-3 22-2
0,2,16 0-0 0-8 0,6,11 3-0 4-7 202 42-2 39-6 600 52 4-6
0,2,17 2-8 37 0,6,12 16-4 14-5 204 314 32-8 602 12-8 11-7
0,2,18 3-4 3-8 0,6,13 2-8 4-3 206 38-0 38-6 604 7-9 6-3
0,6,14 10-8 10-9 208 15-5 13-2 602 19-0 19-3
040 4-1 2-1 0,6,15 1-7 2-3 2,0,10 18-6 17-8 604 15-0 14-1
041 2-8 1-0 2,0,12 13-3 15-0 606 10-5 5-7
042 7-2 7-0 080 3-1 4-3 2,0,14 53 50 608 15-7 14-2
043 7-4 9-3

atoms in the asymmetric unit were clearly resolved,
and the projection was refined by the ‘back-shift’

method, using the observed and calculated electron-
density maps. The initial ¥ and z coordinates and the
final values, after three successive Fourier refinements,
are listed in Table 4. The y coordinates of atoms O,
and O,;, which are not resolved in projection, were
obtained by minimizing the R factor for various
separations. The electron-density map for the third
0%l refinement is shown in Fig. 2(a).

The overlap of the atomic peaks in the (010) pro-
jection makes refinement of the x coordinates by two-
dimensional Fourier methods extremely difficult.

Three refinements of the kOl projection (Fig.2(b))
yielded a set of average x parameters for overlapping

atoms. The agreement between the observed and
calculated intensities was improved still further by
splitting the 2 coordinates of overlapping atoms while
still retaining the same average values. The initial
and final x parameters are listed in Table 4.

Table 5 compares the observed structure amplitudes
with the corresponding theoretical values calculated
from the atomic coordinates given in Table 4. The
86 Okl reflections yield an R factor of 16-6% while
the 39 ROl reflections give R = 14-89%,.
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Fig. 2. Fourier syntheses of the dickite structure projected
(a) parallel to the a axis, (b) parallel to the b axis.

5. Discussion of the structure

The Si-O and Al-O,(OH) distances are summarized
in Table 6. The average bond lengths, Si-O = 1-64 A

Table 6. Interatomic distances

8i,-0, 1-60 A 8iy-0, 1-61 A
Si,-0, 1-62 8iy-0, 1-63
8i,-0, 1-64 8i,-0, 1-66
8i,-0, 1-67 8iy-0, 1-67
Average Si-0, 1-638 A.
Al-0, 1-94 A Al,-0, 1-96 A
Al,-O, 1-98 Al-O; 1-94
Al-(OH), 1-93 Al-(OH), 194
Al,-(OH), 1-97 Al,-(OH), 192
Al,-(OH), 190 Al-(OH), 1-95
Al,-(OH), 1-90 AlL,-(OH), 1.91

Average Al-0,(OH), 1-937 A.
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and Al-0,(OH) = 1-94 A, may be compared with the
corresponding values, namely 1-59 and 2-03 A, cal-
culated for the idealized layer structure. The distortion
of the actual layer from the idealized arrangement
reduces the Al bonds to values in better agreement
with those usually found, and the increase in the Si
bond lengths is also acceptable. As Pauling (1930) and
others have pointed out, there is a considerable misfit
between the octahedral aluminum layer as found in
gibbsite, where the parameter corresponding to b is
8-64 A, and an ideal hexagonal net of tetrahedra with
Si-O = 1-62 A, which has a value of b = 9-16 A. We
see that in dickite the ‘oversized’ silica layer is com-
pressed mainly by rotations of the tetrahedra (see
Fig. 3(a)), while the alumina layer, though expanded,
is not expanded by so large amount as the idealized
arrangement required, and the principal distortion is
a shortening of the shared octahedral edges in ac-
cordance with Pauling’s rules (see Fig. 3(b)).

The interlayer bonding is illustrated in Fig. 4,
which shows the oxygen-hydroxyl stacking found
between successive kaolin layers in the refined dickite
structure. Each oxygen atom is paired off with one

3

® Silicon © Hydroxyl

O Oaxygen

Fig. 4. Projection on (001) of adjacent Si-O network and OH
layer, showing pairing of oxygens and hydroxyls.

e Silicon

(@

O Oxygen

® Aluminum O Oxygen © Hydroxyl

b
Fig. 3. Projections on (001) of {a) the 8i-O tetrahedral layer and (b) the Al-O(OH) octahedral layer.
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hydroxyl in the adjacent layer. The average O-OH
interatomic distance is 2-89 A, indicating the presence
of hydroxyl-type bonding between the kaolin layers.

Finally we desire to thank Prof. Ray Pepinsky for
making available the facilities of X-RAC, and Prof.
V. Vand, Dr P.F. Eiland, Mrs Josephine Lombard
and Mr H. A. McKinstry for numerous discussions.
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support which made this investigation possible.
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Packing in Framework Structures*

By WirLiam T. HoLsER
Institute of Geophysics, University of California, Los Angeles 24, California, U.S. 4.

(Recetved 27 February 1956)

The topology of framework structures as described recently by Wells is considered in relation to
packing coefficient. For stacked nets of regular polygons the packing decreases with the rank and
proportion of the large polygon. In framework silicates, however, large polygons such as the 8-gonsin
feldspar are stable only in a collapsed form with diameter similar to 6-gons, and the resulting in-
crease in packing may more than offset the topological effect. Four-connected silicate frameworks
with packings appreciably greater than that of quartz are not likely.

Introduction

A general survey of possible structural arrangements in
crystals was first given by Niggli (summarized in
Niggli, 1941), who enumerated them on the basis of
the type and arrangement of coordination polyhedra
and the number of dimensions in the structural com-
plex.

More recently Wells (1954a, b, ¢, d, 1955) has dis-
cussed the possible extended networks from a more
strictly topological viewpoint, with particular emphasis
on the proportions of polygons of various numbers of
sides (here called rank) formed by connecting points
at the centers of atoms. Wells (1954d) also noted the
variation in packing of a framework structure with the
coordination number; in terms of packing coefficient
(percentage of space filled by spherical atoms; 10
times the ‘packing index’ of Fairbairn (1943)) repre-
sentative values are:

Coordination
number

Packing
coefficient
(%)

74
68
52
34
23

W B oo

* Publication No. 67, Institute of Geophysics, University
of California, Los Angeles 24, California, U.S.A.

1 The term net as used by Wells is not restricted to its
standard crystallographic usage (International Union of
Crystallography, 1952) as Wells’ points are not necessarily
symmetrically equivalent.

These considerations raise a question as to the
relative importance of other variables in the packing,
and in particular the possible relation of packing to
the polygonal topology of the structure. In the follow-
ing discussion the theoretical relations are compared
with actual packings found in some known silicate
framework structures. Elsewhere (Holser & Schneer,
1956) these conclusions are applied as part of a
discussion of possible polymorphic transformations
under the high pressures in the earth’s mantle.

Packing in two-dimensional nets

We restrict the present discussion to three-dimensional
4.connected nets.t As pointed out by Wells (19545, c),
silicate or other tetrahedral frameworks that have
coordination numbers 4,2 form frameworks that are
topologically equivalent to these nets. One of the ways
(Wells, 1954b6) in which three-dimensional 4-connected
nets may be formed is by stacking two-dimensional

3-connected nets and connecting them with additional
links to each point. Wells has derived systematically
15 of these latter nets, as enumerated in Table 1 and
Fig. 1 of his paper (1954a). Consider now the packing
coefficient (in two dimensions) of these nets. Of course
it will vary with the lengths and angles of the bonds,
neither of which is of topological consequence. Even
with the restriction of periodicity, a wide variation is
possible. As a preliminary step let us form the nets
from polygons which are as regular (symmetrical, with
bonds of equal length) as possible, although in certain



